Generalizations of some integral inequalities for Riemann-Liouville operator

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integral Inequalities for h(x)-Riemann-Liouville Fractional Integrals

In this article, we obtain generalizations for Grüss type integral inequality by using h(x)-Riemann-Liouville fractional integral.

متن کامل

Some new Hardy-type inequalities for Riemann-Liouville fractional q-integral operator

*Correspondence: [email protected] 1Luleå University of Technology, Luleå, 971 87, Sweden 2Narvik University College, P.O. Box 385, Narvik, 8505, Norway Full list of author information is available at the end of the article Abstract We consider the q-analog of the Riemann-Liouville fractional q-integral operator of order n ∈ N. Some new Hardy-type inequalities for this operator are proved and dis...

متن کامل

The Riemann-Liouville Operator to Generate Some New Inequalities

where f, g are two differentiable functions and f ′, g′ ∈ L∞(a, b) and p is a positive and integrable function on [a, b]. Other interesting corollaries are also presented in [12]. Many researchers have given considerable attention to (1) and several inequalities related to this functional have appeared in the literature, to mention a few, see [1, 3, 8, 15, 16, 19, 20, 22] and the references cit...

متن کامل

Some New Delay Integral Inequalities Based on Modified Riemann-Liouville Fractional Derivative and Their Applications

By using the properties of modified Riemann-Liouville fractional derivative, some new delay integral inequalities have been studied. First, we offered explicit bounds for the unknown functions, then we applied the results to the research concerning the boundness, uniqueness and continuous dependence on the initial for solutions to certain fractional differential equations.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ??????????? ???????

سال: 2022

ISSN: ['2732-9240']

DOI: https://doi.org/10.22405/2226-8383-2022-23-2-161-169